

- Introduction: MS-based quantitative proteomics
- Evaluation of label-free workflows for discovery proteomics
- Biological applications:
 - SLP76 interactome (mast cells signalling)
 - Identification of a novel molecular weapon in a clinical P. *aeruginosa* strain
- Conclusions and perspectives

Expression proteomics challenges

Exhaustively identify and accurately compare protein levels in complex biological systems in various states (if possible, routinely...)

→ MS-based analyses

Quantitative MS-based expression proteomics in discovery mode

MS-based quantitative proteomics

!!! For several reasons, MS is only partially a quantitative tool !!!

Impossible to infere quantification values by comparing intensities of peptides with different sequences.

<u>but</u>

The same peptide can be quantified relatively in separate analyses

Silva JC et al., 2005, Anal. Chem

Strategies in discovery quantitative proteomics

Käll L & Vitek O, 2011, PLoS Comput Biol

Potential limitations for label-free approaches

- Limited number of biological and analytical replicates
- Irreproducibility of biological samples
- Multiple fractionation before nanoLC-MS/MS
- Irreproducibility of analytical platform
- Big amounts of data

•••

Peak integration Spectral counting Both Complexity of data Peptide ID errors Dynamic exclusion (overlapping signals, various Shared peptides isotopic distribution, multiple Low abundance peptides/proteins charge states, non-linear distortion in RT dimension, ...) 15000 Sequence of complex tasks (error control) isotope clusters n = 101726 targeted clusters n = 16924 identified clusters n = 9797 Frequency 10000 Inference of protein quantification 5000 0 high 2 8 9 3 Intensity log(10)

Michalski et al., 2011, J Proteom Res

Label-free strategies: road to statistical assessment

Label-free strategies: road to statistical assessment

Tool selection

MSn Extract	MaxQuant		MFPaC	2	Mascot Distiller		Mascot
LC-Progenesis		hEIDI		Viper	Skyline	IRMa	
Perseus	DeconTools		JMP		Andromeda		Scaffold
Sa	- Type o - Open- - Usabil 	of quant source ity assess	tification / freewa	used pe	nmercial	уре	

- → Spectral-count analysis is globally less sensitive but shows to be efficient for successfully detecting proteins with high fold in a « clean » way (low FDP)
- → Very good sensitivity can be achieved by label-free MS signal analysis at the cost of a relatively high FDP → pre-statistical assessment procedures? Statistical test?

Application of label-free MSbased proteomics to « real-life » samples

Immunology department

Institut de Biologie de l'Ecole Normale Supérieure

IMMUNOLOGY

Inflammation and signalling in mastocytes

- Mast cells play critical roles in the initiation of IgEdependent allergic inflammation
- How signalling in mast cells propagates and provides the condition for inflammation to start and develop?
- → Dissection of the pathway using AP-MS

Figure 2 | The 'principle' signalling cascade in activated mast cells.

AP-MS

How to discriminate between real partners and unspecific background?

→ Quantitative proteomics comparing control and test samples

Model of homozygous tagged mice

Bounab, Hesse et al., 2013, Mol Cell Proteomics

Affinity purification efficiency

SLP76 interactome in resting and activated mast cells

Slp76 interactome uncovered both partners already described in T-cells and novel partners seen only in mast cells.

Validation of the SLP76-Bcr interaction in activated mast cells

- First proteomic analysis of FccRI signalling in primary mouse mast cells.
- Description of the SLP76 interactomes in resting and activated cultured mast cells.
- Label-free quantitative proteomics successfully identified a novel important molecule in FceRI signalling.

Isolation of a novel clinical strain

Isolated from patient with fatal hemorrhagic pneumonia.

Label-free proteomic analyses

exIA is required and sufficient to provoke cytolysis and fatal hemorrhage in mice infected by P. *aeruginosa* lacking T3SS.

- Proteomic analysis to find factors of virulence in a novel clinical strain
- Identification of several differentially expressed proteins between moderately toxic and highly toxic strains
- Uncovering of a novel virulence mechanism

General conclusions

- Label-free analysis: 2 main approaches in quantitative data extraction
- Peak integration suggested to be (become) the most valuable for accurate comparison of proteomes
- Complexity of the workflows that can lead to identification and quantification errors
- Valuable information obtained from analyses of biological samples

- Combination of algorithms from different softwares
- Statistical assessment procedures (normalisation, missing values imputation, differential expression testing with error control, ...)
- Work at peptide or protein level?
- Increase in data size

ProSta 🥡 - a	a GUI for DAPAR packag
Analysis pipeline	
File DescriptiveStatistics PreProcessing	
l 🛄 Help	
Datasets available	
none	
Refresh dataset Clear all	

 Expanding proteome quantification coverage: moving from DDA to DIA?

Acknowledgments

Claire Ramus Anne-Marie Hesse Bottom-up PF Informatics group KDPD group

Myriam Ferro Christophe Bruley

